QGIS API Documentation
3.4.15Madeira (e83d02e274)

A geometry is the spatial representation of a feature. More...
#include <qgsgeometry.h>
Classes  
class  Error 
Public Types  
enum  BufferSide { SideLeft = 0, SideRight } 
Side of line to buffer. More...  
enum  EndCapStyle { CapRound = 1, CapFlat, CapSquare } 
End cap styles for buffers. More...  
enum  JoinStyle { JoinStyleRound = 1, JoinStyleMiter, JoinStyleBevel } 
Join styles for buffers. More...  
enum  OperationResult { Success = 0, NothingHappened = 1000, InvalidBaseGeometry, InvalidInputGeometryType, SelectionIsEmpty, SelectionIsGreaterThanOne, GeometryEngineError, LayerNotEditable, AddPartSelectedGeometryNotFound, AddPartNotMultiGeometry, AddRingNotClosed, AddRingNotValid, AddRingCrossesExistingRings, AddRingNotInExistingFeature, SplitCannotSplitPoint } 
Success or failure of a geometry operation. More...  
enum  ValidationMethod { ValidatorQgisInternal, ValidatorGeos } 
Available methods for validating geometries. More...  
enum  ValidityFlag { FlagAllowSelfTouchingHoles = 1 << 0 } 
Validity check flags. More...  
Public Member Functions  
QgsGeometry ()  
Constructor. More...  
QgsGeometry (const QgsGeometry &)  
Copy constructor will prompt a deep copy of the object. More...  
QgsGeometry (QgsAbstractGeometry *geom)  
Creates a geometry from an abstract geometry object. More...  
QgsGeometry (std::unique_ptr< QgsAbstractGeometry > geom)  
Creates a geometry from an abstract geometry object. More...  
~QgsGeometry ()  
OperationResult  addPart (const QVector< QgsPointXY > &points, QgsWkbTypes::GeometryType geomType=QgsWkbTypes::UnknownGeometry) 
Adds a new part to a the geometry. More...  
OperationResult  addPart (const QgsPointSequence &points, QgsWkbTypes::GeometryType geomType=QgsWkbTypes::UnknownGeometry) 
Adds a new part to a the geometry. More...  
OperationResult  addPart (QgsAbstractGeometry *part, QgsWkbTypes::GeometryType geomType=QgsWkbTypes::UnknownGeometry) 
Adds a new part to this geometry. More...  
OperationResult  addPart (const QgsGeometry &newPart) 
Adds a new island polygon to a multipolygon feature. More...  
OperationResult  addRing (const QVector< QgsPointXY > &ring) 
Adds a new ring to this geometry. More...  
OperationResult  addRing (QgsCurve *ring) 
Adds a new ring to this geometry. More...  
void  adjacentVertices (int atVertex, int &beforeVertex, int &afterVertex) const 
Returns the indexes of the vertices before and after the given vertex index. More...  
double  angleAtVertex (int vertex) const 
Returns the bisector angle for this geometry at the specified vertex. More...  
double  area () const 
Returns the area of the geometry using GEOS. More...  
QVector< QgsGeometry >  asGeometryCollection () const 
Returns contents of the geometry as a list of geometries. More...  
QString  asJson (int precision=17) const 
Exports the geometry to a GeoJSON string. More...  
QgsMultiPointXY  asMultiPoint () const 
Returns contents of the geometry as a multi point if wkbType is WKBMultiPoint, otherwise an empty list. More...  
QgsMultiPolygonXY  asMultiPolygon () const 
Returns contents of the geometry as a multi polygon if wkbType is WKBMultiPolygon, otherwise an empty list. More...  
QgsMultiPolylineXY  asMultiPolyline () const 
Returns contents of the geometry as a multi linestring if wkbType is WKBMultiLineString, otherwise an empty list. More...  
QgsPointXY  asPoint () const 
Returns the contents of the geometry as a 2dimensional point. More...  
QgsPolygonXY  asPolygon () const 
Returns the contents of the geometry as a polygon. More...  
QgsPolylineXY  asPolyline () const 
Returns the contents of the geometry as a polyline. More...  
QPointF  asQPointF () const 
Returns contents of the geometry as a QPointF if wkbType is WKBPoint, otherwise returns a null QPointF. More...  
QPolygonF  asQPolygonF () const 
Returns contents of the geometry as a QPolygonF. More...  
QByteArray  asWkb () const 
Export the geometry to WKB. More...  
QString  asWkt (int precision=17) const 
Exports the geometry to WKT. More...  
int  avoidIntersections (const QList< QgsVectorLayer * > &avoidIntersectionsLayers, const QHash< QgsVectorLayer *, QSet< QgsFeatureId > > &ignoreFeatures=(QHash< QgsVectorLayer *, QSet< QgsFeatureId > >())) 
Modifies geometry to avoid intersections with the layers specified in project properties. More...  
QgsRectangle  boundingBox () const 
Returns the bounding box of the geometry. More...  
bool  boundingBoxIntersects (const QgsRectangle &rectangle) const 
Returns true if the bounding box of this geometry intersects with a rectangle. More...  
bool  boundingBoxIntersects (const QgsGeometry &geometry) const 
Returns true if the bounding box of this geometry intersects with the bounding box of another geometry. More...  
QgsGeometry  buffer (double distance, int segments) const 
Returns a buffer region around this geometry having the given width and with a specified number of segments used to approximate curves. More...  
QgsGeometry  buffer (double distance, int segments, EndCapStyle endCapStyle, JoinStyle joinStyle, double miterLimit) const 
Returns a buffer region around the geometry, with additional style options. More...  
QgsGeometry  centroid () const 
Returns the center of mass of a geometry. More...  
QgsGeometry  clipped (const QgsRectangle &rectangle) 
Clips the geometry using the specified rectangle. More...  
double  closestSegmentWithContext (const QgsPointXY &point, QgsPointXY &minDistPoint, int &afterVertex, int *leftOf=nullptr, double epsilon=DEFAULT_SEGMENT_EPSILON) const 
Searches for the closest segment of geometry to the given point. More...  
QgsPointXY  closestVertex (const QgsPointXY &point, int &atVertex, int &beforeVertex, int &afterVertex, double &sqrDist) const 
Returns the vertex closest to the given point, the corresponding vertex index, squared distance snap point / target point and the indices of the vertices before and after the closest vertex. More...  
double  closestVertexWithContext (const QgsPointXY &point, int &atVertex) const 
Searches for the closest vertex in this geometry to the given point. More...  
QgsGeometry  combine (const QgsGeometry &geometry) const 
Returns a geometry representing all the points in this geometry and other (a union geometry operation). More...  
QgsAbstractGeometry::const_part_iterator  const_parts_begin () const 
Returns STLstyle const iterator pointing to the first part of the geometry. More...  
QgsAbstractGeometry::const_part_iterator  const_parts_end () const 
Returns STLstyle iterator pointing to the imaginary part after the last part of the geometry. More...  
const QgsAbstractGeometry *  constGet () const 
Returns a nonmodifiable (const) reference to the underlying abstract geometry primitive. More...  
QgsGeometryConstPartIterator  constParts () const 
Returns Javastyle iterator for traversal of parts of the geometry. More...  
bool  contains (const QgsPointXY *p) const 
Tests for containment of a point (uses GEOS) More...  
bool  contains (const QgsGeometry &geometry) const 
Tests for if geometry is contained in another (uses GEOS) More...  
bool  convertGeometryCollectionToSubclass (QgsWkbTypes::GeometryType geomType) 
Converts geometry collection to a the desired geometry type subclass (multipoint, multilinestring or multipolygon). More...  
bool  convertToMultiType () 
Converts single type geometry into multitype geometry e.g. More...  
bool  convertToSingleType () 
Converts multi type geometry into single type geometry e.g. More...  
void  convertToStraightSegment (double tolerance=M_PI/180., QgsAbstractGeometry::SegmentationToleranceType toleranceType=QgsAbstractGeometry::MaximumAngle) 
Converts the geometry to straight line segments, if it is a curved geometry type. More...  
QgsGeometry  convertToType (QgsWkbTypes::GeometryType destType, bool destMultipart=false) const 
Try to convert the geometry to the requested type. More...  
QgsGeometry  convexHull () const 
Returns the smallest convex polygon that contains all the points in the geometry. More...  
bool  crosses (const QgsGeometry &geometry) const 
Test for if geometry crosses another (uses GEOS) More...  
QgsGeometry  delaunayTriangulation (double tolerance=0.0, bool edgesOnly=false) const 
Returns the Delaunay triangulation for the vertices of the geometry. More...  
bool  deletePart (int partNum) 
Deletes part identified by the part number. More...  
bool  deleteRing (int ringNum, int partNum=0) 
Deletes a ring in polygon or multipolygon. More...  
bool  deleteVertex (int atVertex) 
Deletes the vertex at the given position number and item (first number is index 0) More...  
QgsGeometry  densifyByCount (int extraNodesPerSegment) const 
Returns a copy of the geometry which has been densified by adding the specified number of extra nodes within each segment of the geometry. More...  
QgsGeometry  densifyByDistance (double distance) const 
Densifies the geometry by adding regularly placed extra nodes inside each segment so that the maximum distance between any two nodes does not exceed the specified distance. More...  
QgsGeometry  difference (const QgsGeometry &geometry) const 
Returns a geometry representing the points making up this geometry that do not make up other. More...  
bool  disjoint (const QgsGeometry &geometry) const 
Tests for if geometry is disjoint of another (uses GEOS) More...  
double  distance (const QgsGeometry &geom) const 
Returns the minimum distance between this geometry and another geometry, using GEOS. More...  
double  distanceToVertex (int vertex) const 
Returns the distance along this geometry from its first vertex to the specified vertex. More...  
void  draw (QPainter &p) const 
Draws the geometry onto a QPainter. More...  
bool  equals (const QgsGeometry &geometry) const 
Test if this geometry is exactly equal to another geometry. More...  
QgsGeometry  extendLine (double startDistance, double endDistance) const 
Extends a (multi)line geometry by extrapolating out the start or end of the line by a specified distance. More...  
QgsGeometry  extrude (double x, double y) 
Returns an extruded version of this geometry. More...  
void  filterVertices (const std::function< bool(const QgsPoint &) > &filter) 
Filters the vertices from the geometry in place, removing any which do not return true for the filter function check. More...  
QgsGeometry  forceRHR () const 
Forces geometries to respect the RightHandRule, in which the area that is bounded by a polygon is to the right of the boundary. More...  
void  fromWkb (unsigned char *wkb, int length) 
Set the geometry, feeding in the buffer containing OGC WellKnown Binary and the buffer's length. More...  
void  fromWkb (const QByteArray &wkb) 
Set the geometry, feeding in the buffer containing OGC WellKnown Binary. More...  
QgsAbstractGeometry *  get () 
Returns a modifiable (nonconst) reference to the underlying abstract geometry primitive. More...  
double  hausdorffDistance (const QgsGeometry &geom) const 
Returns the Hausdorff distance between this geometry and geom. More...  
double  hausdorffDistanceDensify (const QgsGeometry &geom, double densifyFraction) const 
Returns the Hausdorff distance between this geometry and geom. More...  
bool  insertVertex (double x, double y, int beforeVertex) 
Insert a new vertex before the given vertex index, ring and item (first number is index 0) If the requested vertex number (beforeVertex.back()) is greater than the last actual vertex on the requested ring and item, it is assumed that the vertex is to be appended instead of inserted. More...  
bool  insertVertex (const QgsPoint &point, int beforeVertex) 
Insert a new vertex before the given vertex index, ring and item (first number is index 0) If the requested vertex number (beforeVertex.back()) is greater than the last actual vertex on the requested ring and item, it is assumed that the vertex is to be appended instead of inserted. More...  
QgsGeometry  interpolate (double distance) const 
Returns an interpolated point on the geometry at the specified distance. More...  
double  interpolateAngle (double distance) const 
Returns the angle parallel to the linestring or polygon boundary at the specified distance along the geometry. More...  
QgsGeometry  intersection (const QgsGeometry &geometry) const 
Returns a geometry representing the points shared by this geometry and other. More...  
bool  intersects (const QgsRectangle &rectangle) const 
Returns true if this geometry exactly intersects with a rectangle. More...  
bool  intersects (const QgsGeometry &geometry) const 
Returns true if this geometry exactly intersects with another geometry. More...  
bool  isEmpty () const 
Returns true if the geometry is empty (eg a linestring with no vertices, or a collection with no geometries). More...  
bool  isGeosEqual (const QgsGeometry &) const 
Compares the geometry with another geometry using GEOS. More...  
bool  isGeosValid (QgsGeometry::ValidityFlags flags=nullptr) const 
Checks validity of the geometry using GEOS. More...  
bool  isMultipart () const 
Returns true if WKB of the geometry is of WKBMulti* type. More...  
bool  isNull () const 
Returns true if the geometry is null (ie, contains no underlying geometry accessible via geometry() ). More...  
bool  isSimple () const 
Determines whether the geometry is simple (according to OGC definition), i.e. More...  
QString  lastError () const 
Returns an error string referring to the last error encountered either when this geometry was created or when an operation was performed on the geometry. More...  
double  length () const 
Returns the length of geometry using GEOS. More...  
double  lineLocatePoint (const QgsGeometry &point) const 
Returns a distance representing the location along this linestring of the closest point on this linestring geometry to the specified point. More...  
QgsGeometry  makeDifference (const QgsGeometry &other) const 
Returns the geometry formed by modifying this geometry such that it does not intersect the other geometry. More...  
int  makeDifferenceInPlace (const QgsGeometry &other) 
Changes this geometry such that it does not intersect the other geometry. More...  
QgsGeometry  makeValid () const 
Attempts to make an invalid geometry valid without losing vertices. More...  
void  mapToPixel (const QgsMapToPixel &mtp) 
Transforms the geometry from map units to pixels in place. More...  
QgsGeometry  mergeLines () const 
Merges any connected lines in a LineString/MultiLineString geometry and converts them to single line strings. More...  
QgsGeometry  minimalEnclosingCircle (QgsPointXY ¢er, double &radius, unsigned int segments=36) const 
Returns the minimal enclosing circle for the geometry. More...  
QgsGeometry  minimalEnclosingCircle (unsigned int segments=36) const 
Returns the minimal enclosing circle for the geometry. More...  
bool  moveVertex (double x, double y, int atVertex) 
Moves the vertex at the given position number and item (first number is index 0) to the given coordinates. More...  
bool  moveVertex (const QgsPoint &p, int atVertex) 
Moves the vertex at the given position number and item (first number is index 0) to the given coordinates. More...  
QgsGeometry  nearestPoint (const QgsGeometry &other) const 
Returns the nearest point on this geometry to another geometry. More...  
QgsGeometry  offsetCurve (double distance, int segments, JoinStyle joinStyle, double miterLimit) const 
Returns an offset line at a given distance and side from an input line. More...  
operator QVariant () const  
Allows direct construction of QVariants from geometry. More...  
QgsGeometry &  operator= (QgsGeometry const &rhs) 
Creates a deep copy of the object. More...  
QgsGeometry  orientedMinimumBoundingBox (double &area, double &angle, double &width, double &height) const 
Returns the oriented minimum bounding box for the geometry, which is the smallest (by area) rotated rectangle which fully encompasses the geometry. More...  
QgsGeometry  orientedMinimumBoundingBox () const 
Returns the oriented minimum bounding box for the geometry, which is the smallest (by area) rotated rectangle which fully encompasses the geometry. More...  
QgsGeometry  orthogonalize (double tolerance=1.0E8, int maxIterations=1000, double angleThreshold=15.0) const 
Attempts to orthogonalize a line or polygon geometry by shifting vertices to make the geometries angles either right angles or flat lines. More...  
bool  overlaps (const QgsGeometry &geometry) const 
Test for if geometry overlaps another (uses GEOS) More...  
QgsGeometryPartIterator  parts () 
Returns Javastyle iterator for traversal of parts of the geometry. More...  
QgsAbstractGeometry::part_iterator  parts_begin () 
Returns STLstyle iterator pointing to the first part of the geometry. More...  
QgsAbstractGeometry::part_iterator  parts_end () 
Returns STLstyle iterator pointing to the imaginary part after the last part of the geometry. More...  
QgsGeometry  pointOnSurface () const 
Returns a point guaranteed to lie on the surface of a geometry. More...  
QgsGeometry  poleOfInaccessibility (double precision, double *distanceToBoundary=nullptr) const 
Calculates the approximate pole of inaccessibility for a surface, which is the most distant internal point from the boundary of the surface. More...  
bool  removeDuplicateNodes (double epsilon=4 *std::numeric_limits< double >::epsilon(), bool useZValues=false) 
Removes duplicate nodes from the geometry, wherever removing the nodes does not result in a degenerate geometry. More...  
QgsGeometry  removeInteriorRings (double minimumAllowedArea=1) const 
Removes the interior rings from a (multi)polygon geometry. More...  
bool  requiresConversionToStraightSegments () const 
Returns true if the geometry is a curved geometry type which requires conversion to display as straight line segments. More...  
OperationResult  reshapeGeometry (const QgsLineString &reshapeLineString) 
Replaces a part of this geometry with another line. More...  
OperationResult  rotate (double rotation, const QgsPointXY ¢er) 
Rotate this geometry around the Z axis. More...  
void  set (QgsAbstractGeometry *geometry) 
Sets the underlying geometry store. More...  
QgsGeometry  shortestLine (const QgsGeometry &other) const 
Returns the shortest line joining this geometry to another geometry. More...  
QgsGeometry  simplify (double tolerance) const 
Returns a simplified version of this geometry using a specified tolerance value. More...  
QgsGeometry  singleSidedBuffer (double distance, int segments, BufferSide side, JoinStyle joinStyle=JoinStyleRound, double miterLimit=2.0) const 
Returns a single sided buffer for a (multi)line geometry. More...  
QgsGeometry  smooth (unsigned int iterations=1, double offset=0.25, double minimumDistance=1.0, double maxAngle=180.0) const 
Smooths a geometry by rounding off corners using the Chaikin algorithm. More...  
QgsGeometry  snappedToGrid (double hSpacing, double vSpacing, double dSpacing=0, double mSpacing=0) const 
Returns a new geometry with all points or vertices snapped to the closest point of the grid. More...  
OperationResult  splitGeometry (const QVector< QgsPointXY > &splitLine, QVector< QgsGeometry > &newGeometries, bool topological, QVector< QgsPointXY > &topologyTestPoints) 
Splits this geometry according to a given line. More...  
double  sqrDistToVertexAt (QgsPointXY &point SIP_IN, int atVertex) const 
Returns the squared Cartesian distance between the given point to the given vertex index (vertex at the given position number, ring and item (first number is index 0)) More...  
QgsGeometry  subdivide (int maxNodes=256) const 
Subdivides the geometry. More...  
QgsGeometry  symDifference (const QgsGeometry &geometry) const 
Returns a geometry representing the points making up this geometry that do not make up other. More...  
QgsGeometry  taperedBuffer (double startWidth, double endWidth, int segments) const 
Calculates a variable width buffer ("tapered buffer") for a (multi)curve geometry. More...  
bool  touches (const QgsGeometry &geometry) const 
Test for if geometry touch another (uses GEOS) More...  
OperationResult  transform (const QgsCoordinateTransform &ct, QgsCoordinateTransform::TransformDirection direction=QgsCoordinateTransform::ForwardTransform, bool transformZ=false) SIP_THROW(QgsCsException) 
Transforms this geometry as described by the coordinate transform ct. More...  
OperationResult  transform (const QTransform &t, double zTranslate=0.0, double zScale=1.0, double mTranslate=0.0, double mScale=1.0) 
Transforms the x and y components of the geometry using a QTransform object t. More...  
void  transformVertices (const std::function< QgsPoint(const QgsPoint &) > &transform) 
Transforms the vertices from the geometry in place, applying the transform function to every vertex. More...  
OperationResult  translate (double dx, double dy, double dz=0.0, double dm=0.0) 
Translates this geometry by dx, dy, dz and dm. More...  
QgsWkbTypes::GeometryType  type () const 
Returns type of the geometry as a QgsWkbTypes::GeometryType. More...  
void  validateGeometry (QVector< QgsGeometry::Error > &errors, ValidationMethod method=ValidatorQgisInternal, QgsGeometry::ValidityFlags flags=nullptr) const 
Validates geometry and produces a list of geometry errors. More...  
QgsGeometry  variableWidthBufferByM (int segments) const 
Calculates a variable width buffer for a (multi)linestring geometry, where the width at each node is taken from the linestring m values. More...  
QgsPoint  vertexAt (int atVertex) const 
Returns coordinates of a vertex. More...  
bool  vertexIdFromVertexNr (int number, QgsVertexId &id) const 
Calculates the vertex ID from a vertex number. More...  
int  vertexNrFromVertexId (QgsVertexId id) const 
Returns the vertex number corresponding to a vertex id. More...  
QgsVertexIterator  vertices () const 
Returns a readonly, Javastyle iterator for traversal of vertices of all the geometry, including all geometry parts and rings. More...  
QgsAbstractGeometry::vertex_iterator  vertices_begin () const 
Returns STLstyle iterator pointing to the first vertex of the geometry. More...  
QgsAbstractGeometry::vertex_iterator  vertices_end () const 
Returns STLstyle iterator pointing to the imaginary vertex after the last vertex of the geometry. More...  
QgsGeometry  voronoiDiagram (const QgsGeometry &extent=QgsGeometry(), double tolerance=0.0, bool edgesOnly=false) const 
Creates a Voronoi diagram for the nodes contained within the geometry. More...  
bool  within (const QgsGeometry &geometry) const 
Test for if geometry is within another (uses GEOS) More...  
QgsWkbTypes::Type  wkbType () const 
Returns type of the geometry as a WKB type (point / linestring / polygon etc.) More...  
Static Public Member Functions  
static QgsGeometry  collectGeometry (const QVector< QgsGeometry > &geometries) 
Creates a new multipart geometry from a list of QgsGeometry objects. More...  
static bool  compare (const QgsPolylineXY &p1, const QgsPolylineXY &p2, double epsilon=4 *std::numeric_limits< double >::epsilon()) 
Compares two polylines for equality within a specified tolerance. More...  
static bool  compare (const QgsPolygonXY &p1, const QgsPolygonXY &p2, double epsilon=4 *std::numeric_limits< double >::epsilon()) 
Compares two polygons for equality within a specified tolerance. More...  
static bool  compare (const QgsMultiPolygonXY &p1, const QgsMultiPolygonXY &p2, double epsilon=4 *std::numeric_limits< double >::epsilon()) 
Compares two multipolygons for equality within a specified tolerance. More...  
static void  convertPointList (const QVector< QgsPointXY > &input, QgsPointSequence &output) 
Upgrades a point list from QgsPointXY to QgsPoint. More...  
static void  convertPointList (const QgsPointSequence &input, QVector< QgsPointXY > &output) 
Downgrades a point list from QgsPoint to QgsPointXY. More...  
static QgsGeometryEngine *  createGeometryEngine (const QgsAbstractGeometry *geometry) 
Creates and returns a new geometry engine. More...  
static QgsPolygonXY  createPolygonFromQPolygonF (const QPolygonF &polygon) 
Creates a QgsPolygonXYfrom a QPolygonF. More...  
static QgsPolylineXY  createPolylineFromQPolygonF (const QPolygonF &polygon) 
Creates a QgsPolylineXY from a QPolygonF. More...  
static QgsGeometry  createWedgeBuffer (const QgsPoint ¢er, double azimuth, double angularWidth, double outerRadius, double innerRadius=0) 
Creates a wedge shaped buffer from a center point. More...  
static QgsGeometry  fromMultiPointXY (const QgsMultiPointXY &multipoint) 
Creates a new geometry from a QgsMultiPointXY object. More...  
static QgsGeometry  fromMultiPolygonXY (const QgsMultiPolygonXY &multipoly) 
Creates a new geometry from a QgsMultiPolygon. More...  
static QgsGeometry  fromMultiPolylineXY (const QgsMultiPolylineXY &multiline) 
Creates a new geometry from a QgsMultiPolylineXY object. More...  
static QgsGeometry  fromPointXY (const QgsPointXY &point) 
Creates a new geometry from a QgsPointXY object. More...  
static QgsGeometry  fromPolygonXY (const QgsPolygonXY &polygon) 
Creates a new geometry from a QgsPolygon. More...  
static QgsGeometry  fromPolyline (const QgsPolyline &polyline) 
Creates a new LineString geometry from a list of QgsPoint points. More...  
static QgsGeometry  fromPolylineXY (const QgsPolylineXY &polyline) 
Creates a new LineString geometry from a list of QgsPointXY points. More...  
static QgsGeometry  fromQPointF (QPointF point) 
Construct geometry from a QPointF. More...  
static QgsGeometry  fromQPolygonF (const QPolygonF &polygon) 
Construct geometry from a QPolygonF. More...  
static QgsGeometry  fromRect (const QgsRectangle &rect) 
Creates a new geometry from a QgsRectangle. More...  
static QgsGeometry  fromWkt (const QString &wkt) 
Creates a new geometry from a WKT string. More...  
static QgsGeometry  polygonize (const QVector< QgsGeometry > &geometries) 
Creates a GeometryCollection geometry containing possible polygons formed from the constituent linework of a set of geometries. More...  
static QgsGeometry  unaryUnion (const QVector< QgsGeometry > &geometries) 
Compute the unary union on a list of geometries. More...  
Friends  
class  QgsInternalGeometryEngine 
A geometry is the spatial representation of a feature.
Since QGIS 2.10, QgsGeometry acts as a generic container for geometry objects. QgsGeometry is implicitly shared, so making copies of geometries is inexpensive. The geometry container class can also be stored inside a QVariant object.
The actual geometry representation is stored as a QgsAbstractGeometry within the container, and can be accessed via the get() method or set using the set() method.
Definition at line 106 of file qgsgeometry.h.
Side of line to buffer.
Enumerator  

SideLeft 
Buffer to left of line. 
SideRight 
Buffer to right of line. 
Definition at line 1030 of file qgsgeometry.h.
End cap styles for buffers.
Enumerator  

CapRound 
Round cap. 
CapFlat 
Flat cap (in line with start/end of line) 
CapSquare 
Square cap (extends past start/end of line by buffer distance) 
Definition at line 1038 of file qgsgeometry.h.
Join styles for buffers.
Enumerator  

JoinStyleRound 
Use rounded joins. 
JoinStyleMiter 
Use mitered joins. 
JoinStyleBevel 
Use beveled joins. 
Definition at line 1047 of file qgsgeometry.h.
Success or failure of a geometry operation.
This gives details about cause of failure.
Definition at line 115 of file qgsgeometry.h.
Available methods for validating geometries.
Enumerator  

ValidatorQgisInternal 
Use internal QgsGeometryValidator method. 
ValidatorGeos 
Use GEOS validation methods. 
Definition at line 1749 of file qgsgeometry.h.
Validity check flags.
Definition at line 343 of file qgsgeometry.h.
QgsGeometry::QgsGeometry  (  ) 
Constructor.
Definition at line 57 of file qgsgeometry.cpp.
QgsGeometry::QgsGeometry  (  const QgsGeometry &  other  ) 
Copy constructor will prompt a deep copy of the object.
Definition at line 82 of file qgsgeometry.cpp.

explicit 
Creates a geometry from an abstract geometry object.
Ownership of geom is transferred.
Definition at line 68 of file qgsgeometry.cpp.

explicit 
Creates a geometry from an abstract geometry object.
Ownership of geom is transferred.
Definition at line 75 of file qgsgeometry.cpp.
QgsGeometry::~QgsGeometry  (  ) 
Definition at line 62 of file qgsgeometry.cpp.
QgsGeometry::OperationResult QgsGeometry::addPart  (  const QVector< QgsPointXY > &  points, 
QgsWkbTypes::GeometryType  geomType = QgsWkbTypes::UnknownGeometry 

) 
Adds a new part to a the geometry.
points  points describing part to add 
geomType  default geometry type to create if no existing geometry 
Definition at line 683 of file qgsgeometry.cpp.
QgsGeometry::OperationResult QgsGeometry::addPart  (  const QgsPointSequence &  points, 
QgsWkbTypes::GeometryType  geomType = QgsWkbTypes::UnknownGeometry 

) 
Adds a new part to a the geometry.
points  points describing part to add 
geomType  default geometry type to create if no existing geometry 
Definition at line 690 of file qgsgeometry.cpp.
QgsGeometry::OperationResult QgsGeometry::addPart  (  QgsAbstractGeometry *  part, 
QgsWkbTypes::GeometryType  geomType = QgsWkbTypes::UnknownGeometry 

) 
Adds a new part to this geometry.
part  part to add (ownership is transferred) 
geomType  default geometry type to create if no existing geometry 
Definition at line 706 of file qgsgeometry.cpp.
QgsGeometry::OperationResult QgsGeometry::addPart  (  const QgsGeometry &  newPart  ) 
Adds a new island polygon to a multipolygon feature.
Definition at line 736 of file qgsgeometry.cpp.
QgsGeometry::OperationResult QgsGeometry::addRing  (  const QVector< QgsPointXY > &  ring  ) 
Adds a new ring to this geometry.
This makes only sense for polygon and multipolygons.
ring  The ring to be added 
Definition at line 664 of file qgsgeometry.cpp.
QgsGeometry::OperationResult QgsGeometry::addRing  (  QgsCurve *  ring  ) 
Adds a new ring to this geometry.
This makes only sense for polygon and multipolygons.
ring  The ring to be added 
Definition at line 670 of file qgsgeometry.cpp.
void QgsGeometry::adjacentVertices  (  int  atVertex, 
int &  beforeVertex,  
int &  afterVertex  
)  const 
Returns the indexes of the vertices before and after the given vertex index.
This function takes into account the following factors:
Definition at line 442 of file qgsgeometry.cpp.
double QgsGeometry::angleAtVertex  (  int  vertex  )  const 
Returns the bisector angle for this geometry at the specified vertex.
vertex  vertex index to calculate bisector angle at 
Definition at line 426 of file qgsgeometry.cpp.
double QgsGeometry::area  (  )  const 
Returns the area of the geometry using GEOS.
Definition at line 1592 of file qgsgeometry.cpp.
QVector< QgsGeometry > QgsGeometry::asGeometryCollection  (  )  const 
Returns contents of the geometry as a list of geometries.
Definition at line 2308 of file qgsgeometry.cpp.
QString QgsGeometry::asJson  (  int  precision = 17  )  const 
Exports the geometry to a GeoJSON string.
Definition at line 1272 of file qgsgeometry.cpp.
QgsMultiPointXY QgsGeometry::asMultiPoint  (  )  const 
Returns contents of the geometry as a multi point if wkbType is WKBMultiPoint, otherwise an empty list.
Definition at line 1481 of file qgsgeometry.cpp.
QgsMultiPolygonXY QgsGeometry::asMultiPolygon  (  )  const 
Returns contents of the geometry as a multi polygon if wkbType is WKBMultiPolygon, otherwise an empty list.
Definition at line 1549 of file qgsgeometry.cpp.
QgsMultiPolylineXY QgsGeometry::asMultiPolyline  (  )  const 
Returns contents of the geometry as a multi linestring if wkbType is WKBMultiLineString, otherwise an empty list.
Definition at line 1505 of file qgsgeometry.cpp.
QgsPointXY QgsGeometry::asPoint  (  )  const 
Returns the contents of the geometry as a 2dimensional point.
Any z or m values present in the geometry will be discarded.
Definition at line 1389 of file qgsgeometry.cpp.
QgsPolygonXY QgsGeometry::asPolygon  (  )  const 
Returns the contents of the geometry as a polygon.
Any z or m values present in the geometry will be discarded. If the geometry is a curved polygon type (such as a CurvePolygon), it will be automatically segmentized.
Definition at line 1446 of file qgsgeometry.cpp.
QgsPolylineXY QgsGeometry::asPolyline  (  )  const 
Returns the contents of the geometry as a polyline.
Any z or m values present in the geometry will be discarded. If the geometry is a curved line type (such as a CircularString), it will be automatically segmentized.
Definition at line 1404 of file qgsgeometry.cpp.
QPointF QgsGeometry::asQPointF  (  )  const 
Returns contents of the geometry as a QPointF if wkbType is WKBPoint, otherwise returns a null QPointF.
Definition at line 2334 of file qgsgeometry.cpp.
QPolygonF QgsGeometry::asQPolygonF  (  )  const 
Returns contents of the geometry as a QPolygonF.
If geometry is a linestring, then the result will be an open QPolygonF. If the geometry is a polygon, then the result will be a closed QPolygonF of the geometry's exterior ring.
Definition at line 2340 of file qgsgeometry.cpp.
QByteArray QgsGeometry::asWkb  (  )  const 
QString QgsGeometry::asWkt  (  int  precision = 17  )  const 
Exports the geometry to WKT.
Definition at line 1263 of file qgsgeometry.cpp.
int QgsGeometry::avoidIntersections  (  const QList< QgsVectorLayer * > &  avoidIntersectionsLayers, 
const QHash< QgsVectorLayer *, QSet< QgsFeatureId > > &  ignoreFeatures = ( QHash<QgsVectorLayer *, QSet<QgsFeatureId> >() ) 

) 
Modifies geometry to avoid intersections with the layers specified in project properties.
avoidIntersectionsLayers  list of layers to check for intersections 
ignoreFeatures  possibility to give a list of features where intersections should be ignored (not available in Python bindings) 
Definition at line 2399 of file qgsgeometry.cpp.
QgsRectangle QgsGeometry::boundingBox  (  )  const 
Returns the bounding box of the geometry.
Definition at line 943 of file qgsgeometry.cpp.
bool QgsGeometry::boundingBoxIntersects  (  const QgsRectangle &  rectangle  )  const 
Returns true if the bounding box of this geometry intersects with a rectangle.
Since this test only considers the bounding box of the geometry, is is very fast to calculate and handles invalid geometries.
Definition at line 1143 of file qgsgeometry.cpp.
bool QgsGeometry::boundingBoxIntersects  (  const QgsGeometry &  geometry  )  const 
Returns true if the bounding box of this geometry intersects with the bounding box of another geometry.
Since this test only considers the bounding box of the geometries, is is very fast to calculate and handles invalid geometries.
Definition at line 1153 of file qgsgeometry.cpp.
QgsGeometry QgsGeometry::buffer  (  double  distance, 
int  segments  
)  const 
Returns a buffer region around this geometry having the given width and with a specified number of segments used to approximate curves.
Definition at line 1736 of file qgsgeometry.cpp.
QgsGeometry QgsGeometry::buffer  (  double  distance, 
int  segments,  
EndCapStyle  endCapStyle,  
JoinStyle  joinStyle,  
double  miterLimit  
)  const 
Returns a buffer region around the geometry, with additional style options.
distance  buffer distance 
segments  for round joins, number of segments to approximate quartercircle 
endCapStyle  end cap style 
joinStyle  join style for corners in geometry 
miterLimit  limit on the miter ratio used for very sharp corners (JoinStyleMiter only) 
Definition at line 1755 of file qgsgeometry.cpp.
QgsGeometry QgsGeometry::centroid  (  )  const 
Returns the center of mass of a geometry.
If the input is a NULL geometry, the output will also be a NULL geometry.
If an error was encountered while creating the result, more information can be retrieved by calling error()
on the returned geometry.
Definition at line 1963 of file qgsgeometry.cpp.
QgsGeometry QgsGeometry::clipped  (  const QgsRectangle &  rectangle  ) 
Clips the geometry using the specified rectangle.
Performs a fast, nonrobust intersection between the geometry and a rectangle. The returned geometry may be invalid.
Definition at line 2634 of file qgsgeometry.cpp.
double QgsGeometry::closestSegmentWithContext  (  const QgsPointXY &  point, 
QgsPointXY &  minDistPoint,  
int &  afterVertex,  
int *  leftOf = nullptr , 

double  epsilon = DEFAULT_SEGMENT_EPSILON 

)  const 
Searches for the closest segment of geometry to the given point.
point  Specifies the point for search 
minDistPoint  Receives the nearest point on the segment 
afterVertex  Receives index of the vertex after the closest segment. The vertex before the closest segment is always afterVertex  1 
leftOf  Out: Returns if the point lies on the left of left side of the geometry ( < 0 means left, > 0 means right, 0 indicates that the test was unsuccessful, e.g. for a point exactly on the line) 
epsilon  epsilon for segment snapping 
Definition at line 640 of file qgsgeometry.cpp.
QgsPointXY QgsGeometry::closestVertex  (  const QgsPointXY &  point, 
int &  atVertex,  
int &  beforeVertex,  
int &  afterVertex,  
double &  sqrDist  
)  const 
Returns the vertex closest to the given point, the corresponding vertex index, squared distance snap point / target point and the indices of the vertices before and after the closest vertex.
point  point to search for 
atVertex  will be set to the vertex index of the closest found vertex 
beforeVertex  will be set to the vertex index of the previous vertex from the closest one. Will be set to 1 if not present. 
afterVertex  will be set to the vertex index of the next vertex after the closest one. Will be set to 1 if not present. 
sqrDist  will be set to the square distance between the closest vertex and the specified point 
Definition at line 382 of file qgsgeometry.cpp.
double QgsGeometry::closestVertexWithContext  (  const QgsPointXY &  point, 
int &  atVertex  
)  const 
Searches for the closest vertex in this geometry to the given point.
point  Specifiest the point for search 
atVertex  Receives index of the closest vertex 
Definition at line 624 of file qgsgeometry.cpp.

static 
Creates a new multipart geometry from a list of QgsGeometry objects.
Definition at line 243 of file qgsgeometry.cpp.
QgsGeometry QgsGeometry::combine  (  const QgsGeometry &  geometry  )  const 
Returns a geometry representing all the points in this geometry and other (a union geometry operation).
If the input is a NULL geometry, the output will also be a NULL geometry.
If an error was encountered while creating the result, more information can be retrieved by calling error()
on the returned geometry.
Definition at line 2217 of file qgsgeometry.cpp.

static 
Compares two polylines for equality within a specified tolerance.
p1  first polyline 
p2  second polyline 
epsilon  maximum difference for coordinates between the polylines 
Definition at line 2890 of file qgsgeometry.cpp.

static 
Compares two polygons for equality within a specified tolerance.
p1  first polygon 
p2  second polygon 
epsilon  maximum difference for coordinates between the polygons 
Definition at line 2903 of file qgsgeometry.cpp.

static 
Compares two multipolygons for equality within a specified tolerance.
p1  first multipolygon 
p2  second multipolygon 
epsilon  maximum difference for coordinates between the multipolygons 
Definition at line 2917 of file qgsgeometry.cpp.
QgsAbstractGeometry::const_part_iterator QgsGeometry::const_parts_begin  (  )  const 
Returns STLstyle const iterator pointing to the first part of the geometry.
This method avoids a detach and is more efficient then parts_begin() for read only iteration.
Definition at line 1705 of file qgsgeometry.cpp.
QgsAbstractGeometry::const_part_iterator QgsGeometry::const_parts_end  (  )  const 
Returns STLstyle iterator pointing to the imaginary part after the last part of the geometry.
This method avoids a detach and is more efficient then parts_end() for read only iteration.
Definition at line 1712 of file qgsgeometry.cpp.
const QgsAbstractGeometry * QgsGeometry::constGet  (  )  const 
Returns a nonmodifiable (const) reference to the underlying abstract geometry primitive.
This is much faster then calling the nonconst get() method.
Definition at line 124 of file qgsgeometry.cpp.
QgsGeometryConstPartIterator QgsGeometry::constParts  (  )  const 
Returns Javastyle iterator for traversal of parts of the geometry.
This iterator returns readonly references to parts and cannot be used to modify the parts.
Unlike parts(), this method does not force a detach and is more efficient if readonly iteration only is required.
Definition at line 1728 of file qgsgeometry.cpp.
bool QgsGeometry::contains  (  const QgsPointXY *  p  )  const 
Tests for containment of a point (uses GEOS)
Definition at line 1163 of file qgsgeometry.cpp.
bool QgsGeometry::contains  (  const QgsGeometry &  geometry  )  const 
Tests for if geometry is contained in another (uses GEOS)
Definition at line 1176 of file qgsgeometry.cpp.
bool QgsGeometry::convertGeometryCollectionToSubclass  (  QgsWkbTypes::GeometryType  geomType  ) 
Converts geometry collection to a the desired geometry type subclass (multipoint, multilinestring or multipolygon).
Child geometries of different type are filtered out. Does nothing the geometry is not a geometry collection. May leave the geometry empty if none of the child geometries match the desired type.
Definition at line 1353 of file qgsgeometry.cpp.

static 
Upgrades a point list from QgsPointXY to QgsPoint.
input  list of QgsPointXY objects to be upgraded 
output  destination for list of points converted to QgsPoint 
Definition at line 2808 of file qgsgeometry.cpp.

static 
Downgrades a point list from QgsPoint to QgsPointXY.
input  list of QgsPoint objects to be downgraded 
output  destination for list of points converted to QgsPointXY 
Definition at line 2817 of file qgsgeometry.cpp.
bool QgsGeometry::convertToMultiType  (  ) 
Converts single type geometry into multitype geometry e.g.
a polygon into a multipolygon geometry with one polygon If it is already a multipart geometry, it will return true and not change the geometry.
Definition at line 1299 of file qgsgeometry.cpp.
bool QgsGeometry::convertToSingleType  (  ) 
Converts multi type geometry into single type geometry e.g.
a multipolygon into a polygon geometry. Only the first part of the multi geometry will be retained. If it is already a single part geometry, it will return true and not change the geometry.
Definition at line 1331 of file qgsgeometry.cpp.
void QgsGeometry::convertToStraightSegment  (  double  tolerance = M_PI / 180. , 
QgsAbstractGeometry::SegmentationToleranceType  toleranceType = QgsAbstractGeometry::MaximumAngle 

) 
Converts the geometry to straight line segments, if it is a curved geometry type.
tolerance  segmentation tolerance 
toleranceType  maximum segmentation angle or maximum difference between approximation and curve 
Definition at line 2580 of file qgsgeometry.cpp.
QgsGeometry QgsGeometry::convertToType  (  QgsWkbTypes::GeometryType  destType, 
bool  destMultipart = false 

)  const 
Try to convert the geometry to the requested type.
destType  the geometry type to be converted to 
destMultipart  determines if the output geometry will be multipart or not 
Definition at line 1281 of file qgsgeometry.cpp.
QgsGeometry QgsGeometry::convexHull  (  )  const 
Returns the smallest convex polygon that contains all the points in the geometry.
If the input is a NULL geometry, the output will also be a NULL geometry.
If an error was encountered while creating the result, more information can be retrieved by calling error()
on the returned geometry.
Definition at line 2009 of file qgsgeometry.cpp.

static 
Creates and returns a new geometry engine.
Definition at line 3416 of file qgsgeometry.cpp.

static 
Creates a QgsPolygonXYfrom a QPolygonF.
polygon  source polygon 
Definition at line 2872 of file qgsgeometry.cpp.

static 
Creates a QgsPolylineXY from a QPolygonF.
polygon  source polygon 
Definition at line 2879 of file qgsgeometry.cpp.

static 
Creates a wedge shaped buffer from a center point.
The azimuth gives the angle (in degrees) for the middle of the wedge to point. The buffer width (in degrees) is specified by the angularWidth parameter. Note that the wedge will extend to half of the angularWidth either side of the azimuth direction.
The outer radius of the buffer is specified via outerRadius, and optionally an innerRadius can also be specified.
The returned geometry will be a CurvePolygon geometry containing circular strings. It may need to be segmentized to convert to a standard Polygon geometry.
Definition at line 272 of file qgsgeometry.cpp.
bool QgsGeometry::crosses  (  const QgsGeometry &  geometry  )  const 
Test for if geometry crosses another (uses GEOS)
Definition at line 1251 of file qgsgeometry.cpp.
QgsGeometry QgsGeometry::delaunayTriangulation  (  double  tolerance = 0.0 , 
bool  edgesOnly = false 

)  const 
Returns the Delaunay triangulation for the vertices of the geometry.
The tolerance parameter specifies an optional snapping tolerance which can be used to improve the robustness of the triangulation. If edgesOnly is true than line string boundary geometries will be returned instead of polygons. An empty geometry will be returned if the diagram could not be calculated.
Definition at line 2041 of file qgsgeometry.cpp.
bool QgsGeometry::deletePart  (  int  partNum  ) 
Deletes part identified by the part number.
Definition at line 2381 of file qgsgeometry.cpp.
bool QgsGeometry::deleteRing  (  int  ringNum, 
int  partNum = 0 

) 
Deletes a ring in polygon or multipolygon.
Ring 0 is outer ring and can't be deleted.
Definition at line 2369 of file qgsgeometry.cpp.
bool QgsGeometry::deleteVertex  (  int  atVertex  ) 
Deletes the vertex at the given position number and item (first number is index 0)
Definition at line 499 of file qgsgeometry.cpp.
QgsGeometry QgsGeometry::densifyByCount  (  int  extraNodesPerSegment  )  const 
Returns a copy of the geometry which has been densified by adding the specified number of extra nodes within each segment of the geometry.
If the geometry has z or m values present then these will be linearly interpolated at the added nodes. Curved geometry types are automatically segmentized by this routine.
Definition at line 1949 of file qgsgeometry.cpp.
QgsGeometry QgsGeometry::densifyByDistance  (  double  distance  )  const 
Densifies the geometry by adding regularly placed extra nodes inside each segment so that the maximum distance between any two nodes does not exceed the specified distance.
E.g. specifying a distance 3 would cause the segment [0 0] > [10 0] to be converted to [0 0] > [2.5 0] > [5 0] > [7.5 0] > [10 0], since 3 extra nodes are required on the segment and spacing these at 2.5 increments allows them to be evenly spaced over the segment. If the geometry has z or m values present then these will be linearly interpolated at the added nodes. Curved geometry types are automatically segmentized by this routine.
Definition at line 1956 of file qgsgeometry.cpp.
QgsGeometry QgsGeometry::difference  (  const QgsGeometry &  geometry  )  const 
Returns a geometry representing the points making up this geometry that do not make up other.
If the input is a NULL geometry, the output will also be a NULL geometry.
If an error was encountered while creating the result, more information can be retrieved by calling error()
on the returned geometry.
Definition at line 2256 of file qgsgeometry.cpp.
bool QgsGeometry::disjoint  (  const QgsGeometry &  geometry  )  const 
Tests for if geometry is disjoint of another (uses GEOS)
Definition at line 1188 of file qgsgeometry.cpp.
double QgsGeometry::distance  (  const QgsGeometry &  geom  )  const 
Returns the minimum distance between this geometry and another geometry, using GEOS.
Will return a negative value if a geometry is missing.
geom  geometry to find minimum distance to 
Definition at line 1626 of file qgsgeometry.cpp.
double QgsGeometry::distanceToVertex  (  int  vertex  )  const 
Returns the distance along this geometry from its first vertex to the specified vertex.
vertex  vertex index to calculate distance to 
Definition at line 410 of file qgsgeometry.cpp.
void QgsGeometry::draw  (  QPainter &  p  )  const 
Draws the geometry onto a QPainter.
p  destination QPainter 
Definition at line 2653 of file qgsgeometry.cpp.
bool QgsGeometry::equals  (  const QgsGeometry &  geometry  )  const 
Test if this geometry is exactly equal to another geometry.
This is a strict equality check, where the underlying geometries must have exactly the same type, component vertices and vertex order.
Calling this method is dramatically faster than the topological equality test performed by isGeosEqual().
Definition at line 1200 of file qgsgeometry.cpp.
QgsGeometry QgsGeometry::extendLine  (  double  startDistance, 
double  endDistance  
)  const 
Extends a (multi)line geometry by extrapolating out the start or end of the line by a specified distance.
Lines are extended using the bearing of the first or last segment in the line.
Definition at line 1890 of file qgsgeometry.cpp.
QgsGeometry QgsGeometry::extrude  (  double  x, 
double  y  
) 
Returns an extruded version of this geometry.
Definition at line 2296 of file qgsgeometry.cpp.
void QgsGeometry::filterVertices  (  const std::function< bool(const QgsPoint &) > &  filter  ) 
Filters the vertices from the geometry in place, removing any which do not return true for the filter function check.
Has no effect when called on a single point geometry.
Depending on the filter used, this may result in an invalid geometry.
Definition at line 2788 of file qgsgeometry.cpp.
QgsGeometry QgsGeometry::forceRHR  (  )  const 
Forces geometries to respect the RightHandRule, in which the area that is bounded by a polygon is to the right of the boundary.
In particular, the exterior ring is oriented in a clockwise direction and the interior rings in a counterclockwise direction.
Definition at line 2428 of file qgsgeometry.cpp.

static 
Creates a new geometry from a QgsMultiPointXY object.
Definition at line 195 of file qgsgeometry.cpp.

static 
Creates a new geometry from a QgsMultiPolygon.
Definition at line 215 of file qgsgeometry.cpp.

static 
Creates a new geometry from a QgsMultiPolylineXY object.
Definition at line 205 of file qgsgeometry.cpp.

static 
Creates a new geometry from a QgsPointXY object.
Definition at line 160 of file qgsgeometry.cpp.

static 
Creates a new geometry from a QgsPolygon.
Definition at line 185 of file qgsgeometry.cpp.

static 
Creates a new LineString geometry from a list of QgsPoint points.
This method will respect any Z or M dimensions present in the input points. E.g. if input points are PointZ type, the resultant linestring will be a LineStringZ type.
Definition at line 180 of file qgsgeometry.cpp.

static 
Creates a new LineString geometry from a list of QgsPointXY points.
Using fromPolyline() is preferred, as fromPolyline() is more efficient and will respect any Z or M dimensions present in the input points.
Definition at line 170 of file qgsgeometry.cpp.

static 
Construct geometry from a QPointF.
point  source QPointF 
Definition at line 2855 of file qgsgeometry.cpp.

static 
Construct geometry from a QPolygonF.
If the polygon is closed than the resultant geometry will be a polygon, if it is open than the geometry will be a polyline.
polygon  source QPolygonF 
Definition at line 2860 of file qgsgeometry.cpp.

static 
Creates a new geometry from a QgsRectangle.
Definition at line 225 of file qgsgeometry.cpp.
void QgsGeometry::fromWkb  (  unsigned char *  wkb, 
int  length  
) 
Set the geometry, feeding in the buffer containing OGC WellKnown Binary and the buffer's length.
This class will take ownership of the buffer.
Definition at line 328 of file qgsgeometry.cpp.
void QgsGeometry::fromWkb  (  const QByteArray &  wkb  ) 
Set the geometry, feeding in the buffer containing OGC WellKnown Binary.
Definition at line 335 of file qgsgeometry.cpp.

static 
Creates a new geometry from a WKT string.
Definition at line 150 of file qgsgeometry.cpp.
QgsAbstractGeometry * QgsGeometry::get  (  ) 
Returns a modifiable (nonconst) reference to the underlying abstract geometry primitive.
This method can be slow to call, as it may trigger a detachment of the geometry and a deep copy. Where possible, use constGet() instead.
Definition at line 129 of file qgsgeometry.cpp.
double QgsGeometry::hausdorffDistance  (  const QgsGeometry &  geom  )  const 
Returns the Hausdorff distance between this geometry and geom.
This is basically a measure of how similar or dissimilar 2 geometries are.
This algorithm is an approximation to the standard Hausdorff distance. This approximation is exact or close enough for a large subset of useful cases. Examples of these are:
If the default approximate provided by this method is insufficient, use hausdorffDistanceDensify() instead.
In case of error 1 will be returned.
Definition at line 1644 of file qgsgeometry.cpp.
double QgsGeometry::hausdorffDistanceDensify  (  const QgsGeometry &  geom, 
double  densifyFraction  
)  const 
Returns the Hausdorff distance between this geometry and geom.
This is basically a measure of how similar or dissimilar 2 geometries are.
This function accepts a densifyFraction argument. The function performs a segment densification before computing the discrete Hausdorff distance. The densifyFraction parameter sets the fraction by which to densify each segment. Each segment will be split into a number of equallength subsegments, whose fraction of the total length is closest to the given fraction.
This method can be used when the default approximation provided by hausdorffDistance() is not sufficient. Decreasing the densifyFraction parameter will make the distance returned approach the true Hausdorff distance for the geometries.
In case of error 1 will be returned.
Definition at line 1656 of file qgsgeometry.cpp.
bool QgsGeometry::insertVertex  (  double  x, 
double  y,  
int  beforeVertex  
) 
Insert a new vertex before the given vertex index, ring and item (first number is index 0) If the requested vertex number (beforeVertex.back()) is greater than the last actual vertex on the requested ring and item, it is assumed that the vertex is to be appended instead of inserted.
Returns false if atVertex does not correspond to a valid vertex on this geometry (including if this geometry is a Point). It is up to the caller to distinguish between these error conditions. (Or maybe we add another method to this object to help make the distinction?)
Definition at line 532 of file qgsgeometry.cpp.
bool QgsGeometry::insertVertex  (  const QgsPoint &  point, 
int  beforeVertex  
) 
Insert a new vertex before the given vertex index, ring and item (first number is index 0) If the requested vertex number (beforeVertex.back()) is greater than the last actual vertex on the requested ring and item, it is assumed that the vertex is to be appended instead of inserted.
Returns false if atVertex does not correspond to a valid vertex on this geometry (including if this geometry is a Point). It is up to the caller to distinguish between these error conditions. (Or maybe we add another method to this object to help make the distinction?)
Definition at line 558 of file qgsgeometry.cpp.
QgsGeometry QgsGeometry::interpolate  (  double  distance  )  const 
Returns an interpolated point on the geometry at the specified distance.
If the original geometry is a polygon type, the boundary of the polygon will be used during interpolation. If the original geometry is a point type, a null geometry will be returned.
If z or m values are present, the output z and m will be interpolated using the existing vertices' z or m values.
If the input is a NULL geometry, the output will also be a NULL geometry.
Definition at line 2082 of file qgsgeometry.cpp.
double QgsGeometry::interpolateAngle  (  double  distance  )  const 
Returns the angle parallel to the linestring or polygon boundary at the specified distance along the geometry.
Angles are in radians, clockwise from north. If the distance coincides precisely at a node then the average angle from the segment either side of the node is returned.
distance  distance along geometry 
Definition at line 2141 of file qgsgeometry.cpp.
QgsGeometry QgsGeometry::intersection  (  const QgsGeometry &  geometry  )  const 
Returns a geometry representing the points shared by this geometry and other.
If the input is a NULL geometry, the output will also be a NULL geometry.
If an error was encountered while creating the result, more information can be retrieved by calling error()
on the returned geometry.
Definition at line 2195 of file qgsgeometry.cpp.
bool QgsGeometry::intersects  (  const QgsRectangle &  rectangle  )  const 
Returns true if this geometry exactly intersects with a rectangle.
This test is exact and can be slow for complex geometries.
The GEOS library is used to perform the intersection test. Geometries which are not valid may return incorrect results.
Definition at line 1125 of file qgsgeometry.cpp.
bool QgsGeometry::intersects  (  const QgsGeometry &  geometry  )  const 
Returns true if this geometry exactly intersects with another geometry.
This test is exact and can be slow for complex geometries.
The GEOS library is used to perform the intersection test. Geometries which are not valid may return incorrect results.
Definition at line 1131 of file qgsgeometry.cpp.
bool QgsGeometry::isEmpty  (  )  const 
Returns true if the geometry is empty (eg a linestring with no vertices, or a collection with no geometries).
A null geometry will always return true for isEmpty().
Definition at line 363 of file qgsgeometry.cpp.
bool QgsGeometry::isGeosEqual  (  const QgsGeometry &  g  )  const 
Compares the geometry with another geometry using GEOS.
This method performs a slow, topological check, where geometries are considered equal if all of the their component edges overlap. E.g. lines with the same vertex locations but opposite direction will be considered equal by this method.
Consider using the much faster, stricter equality test performed by equals() instead.
Definition at line 2538 of file qgsgeometry.cpp.
bool QgsGeometry::isGeosValid  (  QgsGeometry::ValidityFlags  flags = nullptr  )  const 
Checks validity of the geometry using GEOS.
The flags parameter indicates optional flags which control the type of validity checking performed.
Definition at line 2510 of file qgsgeometry.cpp.
bool QgsGeometry::isMultipart  (  )  const 
Returns true if WKB of the geometry is of WKBMulti* type.
Definition at line 373 of file qgsgeometry.cpp.
bool QgsGeometry::isNull  (  )  const 
Returns true if the geometry is null (ie, contains no underlying geometry accessible via geometry() ).
Definition at line 145 of file qgsgeometry.cpp.
bool QgsGeometry::isSimple  (  )  const 
Determines whether the geometry is simple (according to OGC definition), i.e.
it has no anomalous geometric points, such as selfintersection or selftangency. Uses GEOS library for the test.
Definition at line 2528 of file qgsgeometry.cpp.
QString QgsGeometry::lastError  (  )  const 
Returns an error string referring to the last error encountered either when this geometry was created or when an operation was performed on the geometry.
Definition at line 2783 of file qgsgeometry.cpp.
double QgsGeometry::length  (  )  const 
Returns the length of geometry using GEOS.
Definition at line 1615 of file qgsgeometry.cpp.
double QgsGeometry::lineLocatePoint  (  const QgsGeometry &  point  )  const 
Returns a distance representing the location along this linestring of the closest point on this linestring geometry to the specified point.
Ie, the returned value indicates how far along this linestring you need to traverse to get to the closest location where this linestring comes to the specified point.
point  point to seek proximity to 
Definition at line 2122 of file qgsgeometry.cpp.
QgsGeometry QgsGeometry::makeDifference  (  const QgsGeometry &  other  )  const 
Returns the geometry formed by modifying this geometry such that it does not intersect the other geometry.
other  geometry that should not be intersect 
Definition at line 922 of file qgsgeometry.cpp.
int QgsGeometry::makeDifferenceInPlace  (  const QgsGeometry &  other  ) 
Changes this geometry such that it does not intersect the other geometry.
other  geometry that should not be intersect 
Definition at line 902 of file qgsgeometry.cpp.
QgsGeometry QgsGeometry::makeValid  (  )  const 
Attempts to make an invalid geometry valid without losing vertices.
Alreadyvalid geometries are returned without further intervention. In case of full or partial dimensional collapses, the output geometry may be a collection of lowertoequal dimension geometries or a geometry of lower dimension. Single polygons may become multigeometries in case of selfintersections. It preserves Z values, but M values will be dropped.
If an error was encountered during the process, more information can be retrieved by calling error()
on the returned geometry.
Definition at line 2415 of file qgsgeometry.cpp.
void QgsGeometry::mapToPixel  (  const QgsMapToPixel &  mtp  ) 
Transforms the geometry from map units to pixels in place.
mtp  map to pixel transform 
Definition at line 2625 of file qgsgeometry.cpp.
QgsGeometry QgsGeometry::mergeLines  (  )  const 
Merges any connected lines in a LineString/MultiLineString geometry and converts them to single line strings.
Definition at line 2236 of file qgsgeometry.cpp.
QgsGeometry QgsGeometry::minimalEnclosingCircle  (  QgsPointXY &  center, 
double &  radius,  
unsigned int  segments = 36 

)  const 
Returns the minimal enclosing circle for the geometry.
center  Center of the minimal enclosing circle returneds 
radius  Radius of the minimal enclosing circle returned 
segments  Number of segments used to segment geometry. 
Definition at line 1065 of file qgsgeometry.cpp.
QgsGeometry QgsGeometry::minimalEnclosingCircle  (  unsigned int  segments = 36  )  const 
Returns the minimal enclosing circle for the geometry.
segments  Number of segments used to segment geometry. 
Definition at line 1092 of file qgsgeometry.cpp.
bool QgsGeometry::moveVertex  (  double  x, 
double  y,  
int  atVertex  
) 
Moves the vertex at the given position number and item (first number is index 0) to the given coordinates.
Returns false if atVertex does not correspond to a valid vertex on this geometry
Definition at line 463 of file qgsgeometry.cpp.
bool QgsGeometry::moveVertex  (  const QgsPoint &  p, 
int  atVertex  
) 
Moves the vertex at the given position number and item (first number is index 0) to the given coordinates.
Returns false if atVertex does not correspond to a valid vertex on this geometry
Definition at line 481 of file qgsgeometry.cpp.
QgsGeometry QgsGeometry::nearestPoint  (  const QgsGeometry &  other  )  const 
Returns the nearest point on this geometry to another geometry.
Definition at line 606 of file qgsgeometry.cpp.
QgsGeometry QgsGeometry::offsetCurve  (  double  distance, 
int  segments,  
JoinStyle  joinStyle,  
double  miterLimit  
)  const 
Returns an offset line at a given distance and side from an input line.
distance  buffer distance 
segments  for round joins, number of segments to approximate quartercircle 
joinStyle  join style for corners in geometry 
miterLimit  limit on the miter ratio used for very sharp corners (JoinStyleMiter only) 
Definition at line 1774 of file qgsgeometry.cpp.

inline 
Allows direct construction of QVariants from geometry.
Definition at line 2102 of file qgsgeometry.h.
QgsGeometry & QgsGeometry::operator=  (  QgsGeometry const &  rhs  ) 
Creates a deep copy of the object.
Definition at line 89 of file qgsgeometry.cpp.
QgsGeometry QgsGeometry::orientedMinimumBoundingBox  (  double &  area, 
double &  angle,  
double &  width,  
double &  height  
)  const 
Returns the oriented minimum bounding box for the geometry, which is the smallest (by area) rotated rectangle which fully encompasses the geometry.
The area, angle (clockwise in degrees from North), width and height of the rotated bounding box will also be returned.
Definition at line 952 of file qgsgeometry.cpp.
QgsGeometry QgsGeometry::orientedMinimumBoundingBox  (  )  const 
Returns the oriented minimum bounding box for the geometry, which is the smallest (by area) rotated rectangle which fully encompasses the geometry.
Definition at line 1011 of file qgsgeometry.cpp.
QgsGeometry QgsGeometry::orthogonalize  (  double  tolerance = 1.0E8 , 
int  maxIterations = 1000 , 

double  angleThreshold = 15.0 

)  const 
Attempts to orthogonalize a line or polygon geometry by shifting vertices to make the geometries angles either right angles or flat lines.
This is an iterative algorithm which will loop until either the vertices are within a specified tolerance of right angles or a set number of maximum iterations is reached. The angle threshold parameter specifies how close to a right angle or straight line an angle must be before it is attempted to be straightened.
Definition at line 1100 of file qgsgeometry.cpp.
bool QgsGeometry::overlaps  (  const QgsGeometry &  geometry  )  const 
Test for if geometry overlaps another (uses GEOS)
Definition at line 1227 of file qgsgeometry.cpp.
QgsGeometryPartIterator QgsGeometry::parts  (  ) 
Returns Javastyle iterator for traversal of parts of the geometry.
This iterator can safely be used to modify parts of the geometry.
This method forces a detach. Use constParts() to avoid the detach if the parts are not going to be modified.
Definition at line 1719 of file qgsgeometry.cpp.
QgsAbstractGeometry::part_iterator QgsGeometry::parts_begin  (  ) 
Returns STLstyle iterator pointing to the first part of the geometry.
This method forces a detach. Use const_parts_begin() to avoid the detach if the parts are not going to be modified.
Definition at line 1689 of file qgsgeometry.cpp.
QgsAbstractGeometry::part_iterator QgsGeometry::parts_end  (  ) 
Returns STLstyle iterator pointing to the imaginary part after the last part of the geometry.
This method forces a detach. Use const_parts_begin() to avoid the detach if the parts are not going to be modified.
Definition at line 1698 of file qgsgeometry.cpp.
QgsGeometry QgsGeometry::pointOnSurface  (  )  const 
Returns a point guaranteed to lie on the surface of a geometry.
While the centroid() of a geometry may be located outside of the geometry itself (e.g., for concave shapes), the point on surface will always be inside the geometry.
If the input is a NULL geometry, the output will also be a NULL geometry.
If an error was encountered while creating the result, more information can be retrieved by calling error()
on the returned geometry.
Definition at line 1987 of file qgsgeometry.cpp.
QgsGeometry QgsGeometry::poleOfInaccessibility  (  double  precision, 
double *  distanceToBoundary = nullptr 

)  const 
Calculates the approximate pole of inaccessibility for a surface, which is the most distant internal point from the boundary of the surface.
This function uses the 'polylabel' algorithm (Vladimir Agafonkin, 2016), which is an iterative approach guaranteed to find the true pole of inaccessibility within a specified tolerance. More precise tolerances require more iterations and will take longer to calculate. Optionally, the distance to the polygon boundary from the pole can be stored.
Definition at line 2002 of file qgsgeometry.cpp.

static 
Creates a GeometryCollection geometry containing possible polygons formed from the constituent linework of a set of geometries.
The input geometries must be fully noded (i.e. nodes exist at every common intersection of the geometries). The easiest way to ensure this is to first call unaryUnion() on the set of input geometries and then pass the result to polygonize(). An empty geometry will be returned in the case of errors.
Definition at line 2561 of file qgsgeometry.cpp.
bool QgsGeometry::removeDuplicateNodes  (  double  epsilon = 4 * std::numeric_limits<double>::epsilon() , 
bool  useZValues = false 

) 
Removes duplicate nodes from the geometry, wherever removing the nodes does not result in a degenerate geometry.
The epsilon parameter specifies the tolerance for coordinates when determining that vertices are identical.
By default, z values are not considered when detecting duplicate nodes. E.g. two nodes with the same x and y coordinate but different z values will still be considered duplicate and one will be removed. If useZValues is true, then the z values are also tested and nodes with the same x and y but different z will be maintained.
Note that duplicate nodes are not tested between different parts of a multipart geometry. E.g. a multipoint geometry with overlapping points will not be changed by this method.
The function will return true if nodes were removed, or false if no duplicate nodes were found.
Definition at line 1116 of file qgsgeometry.cpp.
QgsGeometry QgsGeometry::removeInteriorRings  (  double  minimumAllowedArea = 1  )  const 
Removes the interior rings from a (multi)polygon geometry.
If the minimumAllowedArea parameter is specified then only rings smaller than this minimum area will be removed.
Definition at line 750 of file qgsgeometry.cpp.
bool QgsGeometry::requiresConversionToStraightSegments  (  )  const 
Returns true if the geometry is a curved geometry type which requires conversion to display as straight line segments.
Definition at line 2591 of file qgsgeometry.cpp.
QgsGeometry::OperationResult QgsGeometry::reshapeGeometry  (  const QgsLineString &  reshapeLineString  ) 
Replaces a part of this geometry with another line.
Definition at line 863 of file qgsgeometry.cpp.
QgsGeometry::OperationResult QgsGeometry::rotate  (  double  rotation, 
const QgsPointXY &  center  
) 
Rotate this geometry around the Z axis.
rotation  clockwise rotation in degrees 
center  rotation center 
Definition at line 799 of file qgsgeometry.cpp.
void QgsGeometry::set  (  QgsAbstractGeometry *  geometry  ) 
Sets the underlying geometry store.
Ownership of geometry is transferred.
Definition at line 135 of file qgsgeometry.cpp.
QgsGeometry QgsGeometry::shortestLine  (  const QgsGeometry &  other  )  const 
Returns the shortest line joining this geometry to another geometry.
Definition at line 615 of file qgsgeometry.cpp.
QgsGeometry QgsGeometry::simplify  (  double  tolerance  )  const 
Returns a simplified version of this geometry using a specified tolerance value.
Definition at line 1930 of file qgsgeometry.cpp.
QgsGeometry QgsGeometry::singleSidedBuffer  (  double  distance, 
int  segments,  
BufferSide  side,  
JoinStyle  joinStyle = JoinStyleRound , 

double  miterLimit = 2.0 

)  const 
Returns a single sided buffer for a (multi)line geometry.
The buffer is only applied to one side of the line.
distance  buffer distance 
segments  for round joins, number of segments to approximate quartercircle 
side  side of geometry to buffer 
joinStyle  join style for corners 
miterLimit  limit on the miter ratio used for very sharp corners 
Definition at line 1832 of file qgsgeometry.cpp.
QgsGeometry QgsGeometry::smooth  (  unsigned int  iterations = 1 , 
double  offset = 0.25 , 

double  minimumDistance = 1.0 , 

double  maxAngle = 180.0 

)  const 
Smooths a geometry by rounding off corners using the Chaikin algorithm.
This operation roughly doubles the number of vertices in a geometry.
If input geometries contain Z or M values, these will also be smoothed and the output geometry will retain the same dimensionality as the input geometry.
iterations  number of smoothing iterations to run. More iterations results in a smoother geometry 
offset  fraction of line to create new vertices along, between 0 and 1.0, e.g., the default value of 0.25 will create new vertices 25% and 75% along each line segment of the geometry for each iteration. Smaller values result in "tighter" smoothing. 
minimumDistance  minimum segment length to apply smoothing to 
maxAngle  maximum angle at node (0180) at which smoothing will be applied 
Definition at line 2930 of file qgsgeometry.cpp.
QgsGeometry QgsGeometry::snappedToGrid  (  double  hSpacing, 
double  vSpacing,  
double  dSpacing = 0 , 

double  mSpacing = 0 

)  const 
Returns a new geometry with all points or vertices snapped to the closest point of the grid.
If the gridified geometry could not be calculated (or was totally collapsed) an empty geometry will be returned. Note that snapping to grid may generate an invalid geometry in some corner cases. It can also be thought as rounding the edges and it may be useful for removing errors.
hSpacing  Horizontal spacing of the grid (x axis). 0 to disable. 
vSpacing  Vertical spacing of the grid (y axis). 0 to disable. 
dSpacing  Depth spacing of the grid (z axis). 0 (default) to disable. 
mSpacing  Custom dimension spacing of the grid (m axis). 0 (default) to disable. 
Definition at line 1107 of file qgsgeometry.cpp.
QgsGeometry::OperationResult QgsGeometry::splitGeometry  (  const QVector< QgsPointXY > &  splitLine, 
QVector< QgsGeometry > &  newGeometries,  
bool  topological,  
QVector< QgsPointXY > &  topologyTestPoints  
) 
Splits this geometry according to a given line.
splitLine  the line that splits the geometry  
[out]  newGeometries  list of new geometries that have been created with the split 
topological  true if topological editing is enabled  
[out]  topologyTestPoints  points that need to be tested for topological completeness in the dataset 
Definition at line 815 of file qgsgeometry.cpp.
double QgsGeometry::sqrDistToVertexAt  (  QgsPointXY &point  SIP_IN, 
int  atVertex  
)  const 
Returns the squared Cartesian distance between the given point to the given vertex index (vertex at the given position number, ring and item (first number is index 0))
Definition at line 600 of file qgsgeometry.cpp.
QgsGeometry QgsGeometry::subdivide  (  int  maxNodes = 256  )  const 
Subdivides the geometry.
The returned geometry will be a collection containing subdivided parts from the original geometry, where no part has more then the specified maximum number of nodes (maxNodes).
This is useful for dividing a complex geometry into less complex parts, which are better able to be spatially indexed and faster to perform further operations such as intersects on. The returned geometry parts may not be valid and may contain selfintersections.
The minimum allowed value for maxNodes is 8.
Curved geometries will be segmentized before subdivision.
If the input is a NULL geometry, the output will also be a NULL geometry.
If an error was encountered while creating the result, more information can be retrieved by calling error()
on the returned geometry.
Definition at line 2055 of file qgsgeometry.cpp.
QgsGeometry QgsGeometry::symDifference  (  const QgsGeometry &  geometry  )  const 
Returns a geometry representing the points making up this geometry that do not make up other.
If the input is a NULL geometry, the output will also be a NULL geometry.
If an error was encountered while creating the result, more information can be retrieved by calling error()
on the returned geometry.
Definition at line 2276 of file qgsgeometry.cpp.
QgsGeometry QgsGeometry::taperedBuffer  (  double  startWidth, 
double  endWidth,  
int  segments  
)  const 
Calculates a variable width buffer ("tapered buffer") for a (multi)curve geometry.
The buffer begins at a width of startWidth at the start of each curve, and ends at a width of endWidth. Note that unlike buffer() methods, startWidth and endWidth are the diameter of the buffer at these points, not the radius.
The segments argument specifies the number of segments to approximate quartercircle curves in the buffer.
Non (multi)curve input geometries will return a null output geometry.
Definition at line 1876 of file qgsgeometry.cpp.
bool QgsGeometry::touches  (  const QgsGeometry &  geometry  )  const 
Test for if geometry touch another (uses GEOS)
Definition at line 1215 of file qgsgeometry.cpp.
QgsGeometry::OperationResult QgsGeometry::transform  (  const QgsCoordinateTransform &  ct, 
QgsCoordinateTransform::TransformDirection  direction = QgsCoordinateTransform::ForwardTransform , 

bool  transformZ = false 

) 
Transforms this geometry as described by the coordinate transform ct.
The transformation defaults to a forward transform, but the direction can be swapped by setting the direction argument.
By default, zcoordinates are not transformed, even if the coordinate transform includes a vertical datum transformation. To transform zcoordinates, set transformZ to true. This requires that the z coordinates in the geometry represent height relative to the vertical datum of the source CRS (generally ellipsoidal heights) and are expressed in its vertical units (generally meters).
Definition at line 2601 of file qgsgeometry.cpp.
QgsGeometry::OperationResult QgsGeometry::transform  (  const QTransform &  t, 
double  zTranslate = 0.0 , 

double  zScale = 1.0 , 

double  mTranslate = 0.0 , 

double  mScale = 1.0 

) 
Transforms the x and y components of the geometry using a QTransform object t.
Optionally, the geometry's z values can be scaled via zScale and translated via zTranslate. Similarly, mvalues can be scaled via mScale and translated via mTranslate.
Definition at line 2613 of file qgsgeometry.cpp.
void QgsGeometry::transformVertices  (  const std::function< QgsPoint(const QgsPoint &) > &  transform  ) 
Transforms the vertices from the geometry in place, applying the transform function to every vertex.
Depending on the transform used, this may result in an invalid geometry.
Transform functions are not permitted to alter the dimensionality of vertices. If a transform which adds (or removes) z/m values is desired, first call the corresponding addZValue() or addMValue() function to change the geometry's dimensionality and then transform.
Definition at line 2798 of file qgsgeometry.cpp.
QgsGeometry::OperationResult QgsGeometry::translate  (  double  dx, 
double  dy,  
double  dz = 0.0 , 

double  dm = 0.0 

) 
Translates this geometry by dx, dy, dz and dm.
Definition at line 786 of file qgsgeometry.cpp.
QgsWkbTypes::GeometryType QgsGeometry::type  (  )  const 
Returns type of the geometry as a QgsWkbTypes::GeometryType.
Definition at line 354 of file qgsgeometry.cpp.

static 
Compute the unary union on a list of geometries.
May be faster than an iterative union on a set of geometries. The returned geometry will be fully noded, i.e. a node will be created at every common intersection of the input geometries. An empty geometry will be returned in the case of errors.
Definition at line 2550 of file qgsgeometry.cpp.
void QgsGeometry::validateGeometry  (  QVector< QgsGeometry::Error > &  errors, 
ValidationMethod  method = ValidatorQgisInternal , 

QgsGeometry::ValidityFlags  flags = nullptr 

)  const 
Validates geometry and produces a list of geometry errors.
The method argument dictates which validator to utilize.
The flags parameter indicates optional flags which control the type of validity checking performed.
Definition at line 2470 of file qgsgeometry.cpp.
QgsGeometry QgsGeometry::variableWidthBufferByM  (  int  segments  )  const 
Calculates a variable width buffer for a (multi)linestring geometry, where the width at each node is taken from the linestring m values.
The segments argument specifies the number of segments to approximate quartercircle curves in the buffer.
Non (multi)linestring input geometries will return a null output geometry.
Definition at line 1883 of file qgsgeometry.cpp.
QgsPoint QgsGeometry::vertexAt  (  int  atVertex  )  const 
Returns coordinates of a vertex.
atVertex  index of the vertex 
Definition at line 584 of file qgsgeometry.cpp.
bool QgsGeometry::vertexIdFromVertexNr  (  int  number, 
QgsVertexId &  id  
)  const 
Calculates the vertex ID from a vertex number.
If a matching vertex was found, it will be stored in id.
Returns true if vertex was found.
Definition at line 2738 of file qgsgeometry.cpp.
int QgsGeometry::vertexNrFromVertexId  (  QgsVertexId  id  )  const 
Returns the vertex number corresponding to a vertex id.
The vertex numbers start at 0, so a return value of 0 corresponds to the first vertex.
Returns 1 if a corresponding vertex could not be found.
Definition at line 2774 of file qgsgeometry.cpp.
QgsVertexIterator QgsGeometry::vertices  (  )  const 
Returns a readonly, Javastyle iterator for traversal of vertices of all the geometry, including all geometry parts and rings.
Definition at line 1682 of file qgsgeometry.cpp.
QgsAbstractGeometry::vertex_iterator QgsGeometry::vertices_begin  (  )  const 
Returns STLstyle iterator pointing to the first vertex of the geometry.
Definition at line 1668 of file qgsgeometry.cpp.
QgsAbstractGeometry::vertex_iterator QgsGeometry::vertices_end  (  )  const 
Returns STLstyle iterator pointing to the imaginary vertex after the last vertex of the geometry.
Definition at line 1675 of file qgsgeometry.cpp.
QgsGeometry QgsGeometry::voronoiDiagram  (  const QgsGeometry &  extent = QgsGeometry() , 
double  tolerance = 0.0 , 

bool  edgesOnly = false 

)  const 
Creates a Voronoi diagram for the nodes contained within the geometry.
Returns the Voronoi polygons for the nodes contained within the geometry. If extent is specified then it will be used as a clipping envelope for the diagram. If no extent is set then the clipping envelope will be automatically calculated. In either case the diagram will be clipped to the larger of the provided envelope OR the envelope surrounding all input nodes. The tolerance parameter specifies an optional snapping tolerance which can be used to improve the robustness of the diagram calculation. If edgesOnly is true than line string boundary geometries will be returned instead of polygons. An empty geometry will be returned if the diagram could not be calculated.
Definition at line 2027 of file qgsgeometry.cpp.
bool QgsGeometry::within  (  const QgsGeometry &  geometry  )  const 
Test for if geometry is within another (uses GEOS)
Definition at line 1239 of file qgsgeometry.cpp.
QgsWkbTypes::Type QgsGeometry::wkbType  (  )  const 
Returns type of the geometry as a WKB type (point / linestring / polygon etc.)
Definition at line 341 of file qgsgeometry.cpp.

friend 
Definition at line 2165 of file qgsgeometry.h.